# Isothermal Vapor-Liquid and Liquid-Liquid Equilibria for the Propane-Ammonia and Propylene-Ammonia Systems 

Katsuji Noda,' Katsufumi Inoue, Takashi Asai, and Kiyoharu Ishida<br>Department of Chemical Engineering, Shizuoka University, Hamamatsu 432, Japan


#### Abstract

Vapor-liquid equilibrium data are obtained for the propane-ammonia ( $273.15,293.15 \mathrm{~K}$ ) and propyleneammonia ( $263.15,273.15,293.15 \mathrm{~K}$ ) systems. These systems have an upper critical solution temperature. Since the liquid mixture changes from two liquid phases to one liquid phase with rising temperature, vapor-liquid-liquid equilibria have to be evaluated. Experimental vapor-liquid equilibrium data are compared with calculated values from the UNIQUAC equation. Agreement of experimental and calculated results is good, although the simultaneous correlation of liquid-liquid equilibria (mutual solubilities) shows slight discrepancies.


## Introduction

Vapor-liquid equilibrium (VLE) data are useful not only for the design of separation equipment, but also for understanding the properties of liquid mixtures. It is difficult at present to correlate or to estimate satisfactorily VLE for partially miscible systems which have a large deviation from Raoult's law. Therefore, it is important to obtain accurate data for VLE and liquid-liquid equilibria (LLE) for complex systems.

This paper presents VLE and LLE data for the binary propane-ammonia and propylene-ammonia systems. VLE data for propane-propylene have been reported by many researchers (1-3) and correlated by Bae et al. (4) and Howat and Swift (5). Ishii et al. (6) have determined the upper critical solution temperatures (UCST) of propane-ammonia (306.8 K ) and of propylene-ammonia ( 265.1 K ) systems.

## Experimental Section

Vapor-liquid equilibria were measured by the static method. The experimental apparatus and procedure are similar to those of Noda et al. (7), except for the analysis of the liquid composition. Pressure $P$ measurements were made with a Bourdon pressure gauge. The Bourdon pressure gauge was calibrated with a dead-weight gauge; measurements are reproducible to within $\pm 1 \mathrm{kPa}$. The temperature $T$ of the water bath was determined by a mercury-in-glass thermometer which was calibrated with a standard one in the National Research Laboratory of Metrology, Japan, and maintained within $\pm 0.02 \mathrm{~K}$.

The liquid-phase $x_{i}$ and vapor-phase $y_{i}$ mole fractions were determined by means of a gas chromatograph. The column packing was Porapack $R$, and the column temperature was 368 K . Liquid and vapor compositions were estimated within $\pm 0.001$ mole fraction.

Commercially available research-grade propane (Takachiho Chemical, purity $>99.9 \%$ ) and propylene (Takachiho Chemical, purity $>99.7 \%$ ) were used without further purification. Commercially available ammonia was used after simple distillation under pressure, to remove higher- and lowerboiling materials dissolved in it.

## Results and Discussion

Experimental VLE data are presented in Tables I and II, and are shown in Figures 1 and 2.

Data for the binary system are correlated by the UNIQUAC equation $(8,9)$ using the maximum-likelihood method (10).

Table I. Vapor-Liquid Equilibrium Data for the Propane (2)-Ammonia (1) System: Liquid-Phase Mole Fraction $x_{1}$, Vapor-Phase Mole Fraction $y_{1}$, Pressure $P$, and Temperature $T$

| $x_{1}$ | $P / \mathrm{kPa}$ | $y_{1}$ | $x_{1}$ | $P / \mathrm{kPa}$ | $y_{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $T=273.15 \mathrm{~K}$ |  |  |  |  |
| 0.0 | 473 | 0.0 | $0.974^{a}$ | 892 | 0.502 |
| 0.025 | 575 | 0.172 | 0.981 | 813 | 0.557 |
| 0.037 | 619 | 0.231 | 0.988 | 741 | 0.610 |
| 0.047 | 662 | 0.270 | 0.993 | 647 | 0.691 |
| 0.063 | 720 | 0.330 | 0.994 | 618 | 0.720 |
| 0.074 | 747 | 0.350 | 0.996 | 550 | 0.795 |
| 0.083 | 772 | 0.375 | 0.997 | 519 | 0.841 |
| 0.103 | 817 | 0.416 | 0.998 | 489 | 0.890 |
| 0.139 | 867 | 0.475 | 1.0 | 430 | 1.0 |
| $0.157^{a}$ | 892 | 0.502 |  |  |  |
|  | $T=298.15 \mathrm{~K}$ |  |  |  |  |
| 0.0 | 836 | 0.0 | $0.943^{a}$ | 1643 | 0.540 |
| 0.022 | 974 | 0.139 | 0.957 | 1567 | 0.577 |
| 0.038 | 1049 | 0.203 | 0.968 | 1455 | 0.620 |
| 0.069 | 1219 | 0.293 | 0.971 | 1410 | 0.642 |
| 0.098 | 1332 | 0.352 | 0.984 | 1225 | 0.735 |
| 0.105 | 1355 | 0.363 | 0.987 | 1167 | 0.763 |
| 0.131 | 1448 | 0.402 | 0.991 | 1103 | 0.802 |
| 0.185 | 1544 | 0.461 | 0.995 | 1007 | 0.852 |
| 0.247 | 1611 | 0.502 | 0.998 | 928 | 0.914 |
| 0.273 | 1629 | 0.514 | 1.0 | 857 | 1.0 |
| $0.333^{a}$ | 1643 | 0.540 |  |  |  |
|  |  |  |  |  |  |
| a Liquid-liquid equilibrium. |  |  |  |  |  |

The activity coefficients $\gamma_{i}$ are expressed in the form

$$
\begin{array}{r}
\ln \gamma_{i}=\ln \left(\phi_{i} / x_{i}\right)+(z / 2) q_{i} \ln \left(\theta_{i} / \phi_{i}\right)+l_{i}\left(\phi_{i} / x_{i}\right) \sum_{j}\left(x_{j} l_{j}\right)- \\
q_{i}\left\{\ln \left(\sum_{j} \theta_{j} \tau_{j i}\right)-1+\sum_{j}\left(\theta_{j} \tau_{i j} / \sum_{k}\left(\theta_{k} \tau_{k j}\right)\right)\right\} \tag{1}
\end{array}
$$

where

$$
\begin{gather*}
\phi_{i}=x_{i} r_{i} / \sum_{i}\left(x_{i} r_{i}\right) \quad \theta_{i}=x_{i} q_{i} / \sum_{i}\left(x_{i} q_{i}\right)  \tag{2}\\
l_{i}=(z / 2)\left(r_{i}-q_{i}\right)-\left(r_{i}-1\right)  \tag{3}\\
\tau_{j i}=\exp \left(-a_{j i} / T\right) \tag{4}
\end{gather*}
$$

and $z$ is the coordination number $(z=10) . r$ and $q$ are structural size parameters and structural area parameters, and are cited from Prausnitz et al. (11). $a_{i j}$ are the adjustable parameters.

Table II. Vapor-Liquid Equilibrium Data for the
Propylene (2)-Ammonia (1) System: Liquid-Phase Mole
Fraction $x_{1}$, Vapor-Phase Mole Fraction $y_{1}$, Pressure $P$, and Temperature $T$

| $x_{1}$ | $\mathrm{P} / \mathrm{kPa}$ | $y_{1}$ | $x_{1}$ | $\mathrm{P} / \mathrm{kPa}$ | $y_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T=263.15 \mathrm{~K}$ |  |  |  |  |  |
| 0.0 | 427 | 0.0 | 0.921 | 647 | 0.454 |
| 0.030 | 532 | 0.182 | 0.955 | 621 | 0.485 |
| 0.046 | 564 | 0.244 | 0.959 | 603 | 0.499 |
| 0.083 | 600 | 0.313 | 0.972 | 564 | 0.533 |
| 0.121 | 630 | 0.355 | 0.988 | 452 | 0.657 |
| 0.193 | 645 | 0.391 | 0.989 | 413 | 0.715 |
| 0.277 | 653 | 0.407 | 0.990 | 401 | 0.737 |
| 0.338 | 655 | 0.427 | 0.991 | 392 | 0.748 |
| $0.426^{\text {a }}$ | 657 | 0.432 | 0.994 | 369 | 0.793 |
| $0.857^{\text {a }}$ | 657 | 0.432 | 1.0 | 291 | 1.0 |
| 0.896 | 651 | 0.440 |  |  |  |
| $T=273.15 \mathrm{~K}$ |  |  |  |  |  |
| 0.0 | 584 | 0.0 | 0.621 | 891 | 0.483 |
| 0.016 | 620 | 0.062 | 0.687 | 889 | 0.487 |
| 0.078 | 741 | 0.239 | 0.771 | 888 | 0.489 |
| 0.099 | 765 | 0.271 | 0.773 | 888 | 0.489 |
| 0.105 | 774 | 0.290 | 0.848 | 880 | 0.494 |
| 0.110 | 777 | 0.291 | 0.860 | 875 | 0.505 |
| 0.147 | 811 | 0.322 | 0.872 | 868 | 0.511 |
| 0.297 | 881 | 0.418 | 0.901 | 849 | 0.523 |
| 0.317 | 883 | 0.419 | 0.914 | 836 | 0.540 |
| 0.339 | 887 | 0.428 | 0.962 | 721 | 0.621 |
| 0.464 | 892 | 0.462 | 0.978 | 658 | 0.669 |
| 0.472 | 891 | 0.463 | 0.991 | 562 | 0.781 |
| 0.590 | 891 | 0.471 | 0.993 | 505 | 0.859 |
| $T=293.15 \mathrm{~K}$ |  |  |  |  |  |
| 0.0 | 1017 | 0.0 | 0.741 | 1566 | 0.526 |
| 0.022 | 1142 | 0.108 | 0.844 | 1530 | 0.546 |
| 0.046 | 1213 | 0.162 | 0.876 | 1505 | 0.558 |
| 0.076 | 1305 | 0.236 | 0.922 | 1443 | 0.585 |
| 0.131 | 1416 | 0.311 | 0.931 | 1422 | 0.605 |
| 0.192 | 1496 | 0.367 | 0.966 | 1305 | 0.662 |
| 0.226 | 1523 | 0.388 | 0.973 | 1225 | 0.700 |
| 0.292 | 1552 | 0.421 | 0.989 | 1081 | 0.839 |
| 0.378 | 1557 | 0.462 | 0.985 | 1030 | 0.794 |
| 0.494 | 1586 | 0.494 | 0.993 | 938 | 0.917 |
| 0.600 | 1579 | 0.511 |  |  |  |

The computer programs used in this work are similar to those described by Prausnitz et al. (11), and the pure component parameters $(r, q)$ are obtained from Prausnitz et al. (11). For binary VLE, the parameters sought are those that minimize the objective function

$$
\begin{align*}
S= & \sum_{n=1}^{M}\left\{\begin{array}{l}
\left(P_{\text {calld }, n}-P_{\text {exptl, } n}\right)^{2} \\
\sigma^{2}(P)
\end{array}+\frac{\left(T_{\text {calcd }, n}-T_{\text {exptl, } n}\right)^{2}}{\sigma^{2}(T)}+\right. \\
& \left.\frac{\left(x_{1, \text { calcd }, n}-x_{1, \text { exptl, } n}\right)^{2}}{\sigma^{2}\left(x_{1}\right)}+\frac{\left(y_{1, \text { calcd }, n}-y_{1, \text { exptl, } n}\right)^{2}}{\sigma^{2}\left(y_{1}\right)}\right\} \tag{5}
\end{align*}
$$

where $\sigma^{2}$ is the estimated variance of each of the measured variances and $\sigma(P)=1 \mathrm{kPa}, \sigma(T)=0.02 \mathrm{~K}$, and $\sigma(x)=\sigma(y)$ $=0.001$.

Pure-component vapor pressures are calculated by using the Frost-Kalkwarf equation whose parameters are available or can be determined from the literature (12-14). The pure vapor pressures of propane and propylene are measured in this apparatus and listed in Tables I and II. The observed values are in agreement with calculated values within the standard deviation ( $\pm 1 \mathrm{kPa}$ ).

Figure 1 shows a comparison of the calculated results with experimental data for the propane-ammonia system at 273.15 and 298.15 K . Figure 2 shows a comparison of the calculated

Table III. Parameters aijand Root Mean Square
Deviations (RMS) in Temperature T, Liquid Mole Fraction $x$, Vapor Mole Fraction $y$, and Pressure $P$ for the Propane (2)-Ammonia (1) and Propylene (2)-Ammonia (1) Systems

| $T / \mathrm{K}$ | $a_{21} / \mathrm{K}$ | $a_{12} / \mathrm{K}$ | $\operatorname{RMS}(T) / \mathrm{K}$ | $\operatorname{RMS}\left(x_{1}\right)$ | $\operatorname{RMS}(\mathrm{P}) / \mathrm{kPa}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |


|  | Propane-Ammonia |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 273.15 | 376.2 | 587.6 | 0.01 | 0.0006 | 5.5 | 0.0061 |
| 298.15 | 279.6 | 543.9 | 0.03 | 0.0022 | 8.3 | 0.0088 |
|  |  | Propylene-Ammonia |  |  |  |  |
| 263.15 | 235.0 | 549.1 | 0.02 | 0.0074 | 10.5 | 0.0043 |
| 273.15 | 231.2 | 433.1 | 0.02 | 0.0031 | 7.8 | 0.0100 |
| 293.15 | 210.7 | 414.4 | 0.04 | 0.0075 | 8.8 | 0.0050 |

${ }^{a} \operatorname{RMS}(Q)=\left\{\Sigma_{i=1}^{M}\left(Q_{\text {calcd }}-Q_{\text {erptt }}\right) i^{2} / M\right\}^{0.5} .(M=$ number of data $)$.


Figure 1. Vapor-liquid equilibria for the ammonia (1)propane (2) system: pressure $P$ as a function of the mole fraction of ammonia, $x_{1}, y_{1}$.


Figure 2. Vapor-liquid equilibria for the ammonia (1)propylene (2) system: pressure $P$ as a function of the mole fraction of ammonia, $x_{1}, y_{1}$.
results with experimental data for the propylene-ammonia system at $263.15,273.15$, and 298.15 K .

Table III lists the parameters and the root mean square deviations (RMS) in total pressure, temperature, and liquid and vapor compositions. Table IV lists the calculated and experimental $x, P$, and $y$ at liquid-liquid equilibrium. Table IV also lists the experimental and calculated $P$ and $y_{1}\left(=x_{1}\right)$ of an azeotropic mixture.

Tables III and IV and Figures 1 and 2 show that the calculated values represent the experimental ones fairly well, although further development is needed for more precise agreement in the three-phase region.

Table IV. Calculated and Experimental Heterogeneous (LLE) or Homogeneous Azeotropic Pressure Pand Mole Fractions ( $\boldsymbol{x}^{\prime}, \mathbf{x}^{\prime \prime}, y$ ) for the Propane (2)-Ammonia (1) and Propylene (2)-Ammonia (1) Systems at Temperature $T$

| T/K | $x_{1, \text { expt }}^{\prime}$ | $x_{1, \text { calcd }}^{\prime}$ | $x^{\prime \prime}{ }_{1, \text { exptl }}$ | $x^{\prime \prime}{ }_{1, \text { cald }}$ | $P_{\text {erpte }} / \mathrm{MPa}$ | $P_{\text {calcd }} / \mathrm{MPa}$ | $\mathrm{y}_{1, \text { exptl }}{ }^{\text {a }}$ | $\mathrm{y}_{1, \text { calcd }{ }^{\text {a }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Propane-Ammonia |  |  |  |  |  |  |  |  |
| $273.15{ }^{\text {b }}$ | 0.157 | 0.179 | 0.974 | 0.986 | 0.892 | 0.904 | 0.502 | 0.493 |
| $298.15{ }^{\text {b }}$ | 0.333 | 0.348 | 0.943 | 0.939 | 1.643 | 1.667 | 0.540 | 0.532 |
| Propylene-Ammonia |  |  |  |  |  |  |  |  |
| $263.15^{\text {b }}$ | 0.426 | 0.340 | 0.857 | 0.886 | 0.657 | 0.669 | 0.432 | 0.429 |
| $273.15{ }^{\text {c }}$ |  |  |  |  | 0.892 | 0.885 | 0.462 | 0.465 |
| $298.15{ }^{\text {c }}$ |  |  |  |  | 1.586 | 1.599 | 0.494 | 0.497 |

${ }^{a}$ Azeotropic composition ( $x_{1}=y_{1}$ ), ${ }^{b}$ Heterogeneous azeotrope. ${ }^{c}$ Homogeneous azeotrope.

## Glossary

| $a$ | binary interaction parameter, $\mathrm{K}^{-1}$ |
| :---: | :---: |
| $l$ | defined by eq 3 |
| $P$ | pressure, kPa |
| $q$ | pure-component area parameter |
| $r$ | pure-component volume parameter |
| $S$ | objective function defined by eq 5 |
| $T$ | absolute temperature, K |
| $x$ | liquid-phase mole fraction |
| $y$ | vapor-phase mole fraction |
| $z$ | coordination number |
| Greek Letters |  |
| $\gamma$ | activity coefficient |
| $\theta$ | area fraction |
| $\sigma$ | standard deviation |
| $\tau$ | binary interaction parameter defined by eq 4 |
| $\phi$ | segment fraction |
| Subscripts |  |
| calcd | calculated |
| exptl | experimental |
| $i, j, k$ | components |

## Literature Cited

(1) Hakuta, T.; Nagahama, K.; Hirata, M. Bull. Jpn. Pet. Inst. 1969, $11,10$.
(2) Manley, D. B.; Swift, G. W. J. Chem. Eng. Data 1971, 16, 301.
(3) Noda, K.; Sakai, M.; Ishida, K. J. Chem. Eng. Data 1982, 27, 32.
(4) Bae, H. K.; Nagahama, K.; Hirata, M. J. Jpn. Pet. Inst. 1978, 21 , 249.
(5) Howat, C. S.; Swift, G. W. Ind. Eng. Chem. Process Des. Dev. 1980, 19, 318.
(6) Ishii, K. K.; Hayami, S.; Shirai, T.; Ishida, K. J. Chem. Eng. Data 1966, 11, 288.
(7) Noda, K.; Morisue, T.; Ishida, K. J. Chem. Eng. Jpn. 1975, 8, 104
(8) Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116.
(9) Prausnitz, L. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular Thermodynamics of Fluid Phase Equilibria; 2nd ed.; PrenticeHall: Englewood Cliffs, NJ, 1986.
(10) Anderson, T. F.; Abrams, D. S. AIChE J. 1978, 24, 20.
(11) Prausnitz, J. M.; Anderson, T. F.; Green, E. A.; Eckert, C. A.; Hsieh, R.; O'Connell, J. P. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1980.
(12) Reid, C. R.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids; McGraw-Hill: New York, 1987.
(13) Zander, M.; Thomas, W. J. Chem. Eng. Data 1979, 24, 1.
(14) Baehr, K. A.; Garnjost, H.; Pollak, R. J. Chem. Thermodyn. 1976, 8, 113.

Received for review September 4, 1991. Revised April 6, 1992. Accepted August 11, 1992.

